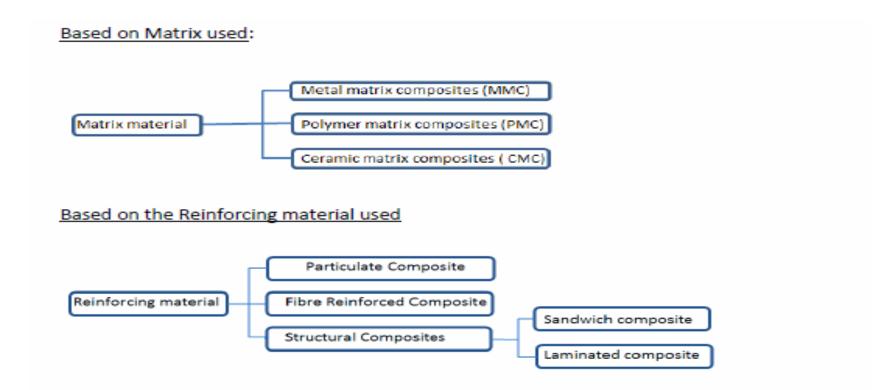
Composite Materials

- Introduction to composite materials
- History of composites in Automobiles
- Why Composites ?
- Effect of Composites on vehicle Properties & Performance
- Advantages of Composites in Styling & Part Consolidation
- Effect on Safety & Crashworthiness
- Scope on Modern Auto Industries
- Examples of using composites in Modern Auto Industries
- Challenges of building a complete composite car
- Future

What is a composite ?

• A composite material is a homogeneous mixture created by the synthetic assembly of two materials of which one is a reinforcing material called *fiber* and other is the binding material called *matrix*.



• It is used in all the fields like Automotive, Aerospace, Construction Industry and Entertainment industry etc

Characteristics

- Rigid High Strength to weight ratio
- Good Electrical resistance
- Resistance to chemical and weather is high
- Good stiffness
- Good Corrosion resistance

Classification

1930-Henry Ford and his Composite Car

1950-SINGER HUNTER

1954 Singer Hunter - GRP bonnet and side valences (Source: The American Singer Owners Club)

1960-Reliant Scimitar

The Reliant Scimitar (GTE SE6a shown here) had a hand laid body supported by a steel chassis (Source: Nick Tucker)

1980- Pontiac Fiero

The Pontiac Fiero – mass production composite intensive body (Source: www.pontiacfiero.com)

Why Composites ?

• To improve the fuel efficiency by reducing the mass

(Improves straight-line acceleration and top speed, lowering weight offers these benefits as well as improving handling characteristics (especially around curves).

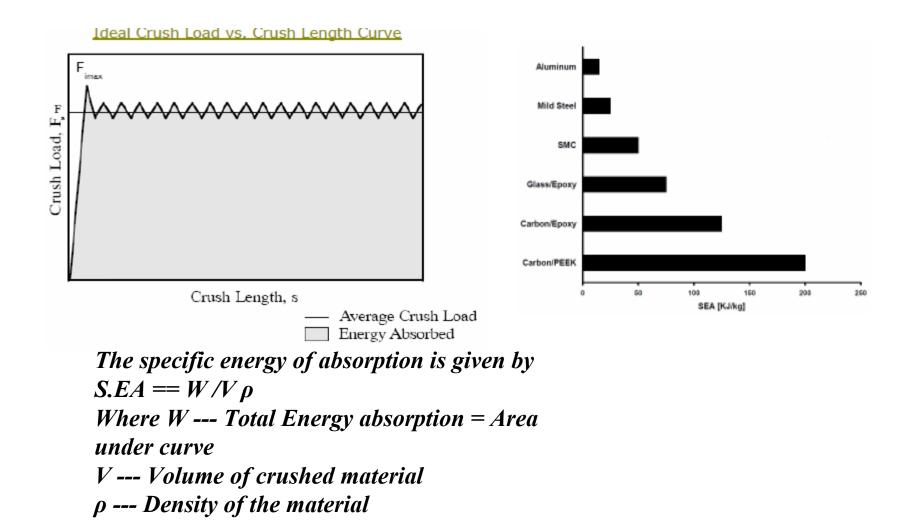
- To improve the safety and crashworthiness
- To enhance styling and part consolidation
- To provide the aerodynamic design

 increase horsepower or decrease mass. This results in a higher power-to-weight ratio, a key predictor of vehicle performance. While raising horsepower alone improves straight-line acceleration and top speed, lowering weight offers these benefits as well as improving handling characteristics (especially around curves). Less weight also reduces loads on the braking and suspension systems, permitting engineers to take additional weight out of these components.

To improve the fuel efficiency by reducing the mass

- Automobile 5-7 \$ /KG
- Aeronautical –500- 700 \$ / KG
- Space 5000 to 7000\$ /KG.

Design/Engine Type	Vehicle Weight (structure and closures)	Fuel Consumption (Itr. per 100 km) and (mpg)	Fuel Efficiency Increase
State of the Art	500 kg	10 (23.5)	0%
 A) High strength steel plus structural bonding 	350 kg (30%)	9.58 (24.6)	4.20%
 B) Carbon fiber composite for structure and closures 	270 kg (42%)	9.31 (25.3)	7%
C1) Diesel engine		7 (33.6)	30%
C2) Full Hybrid (Otto)		6.5 (36.2)	35%
C3) Full Hybrid (Diesel)		5.5 (42.8)	45%


To improve the safety and crashworthiness

•Maintain occupant survivable volume or occupant space.

- •Restrain occupants (within that space)
- Limit occupants deceleration within tolerable levels
- Retain " safety- cage "integrity
- Minimize post crash hazards

To improve the safety and crashworthiness

Safety effect by using composites

- Reduces damage and injury to the passenger from accidents.
- Composite C –fiber composites are preferable over steel/ magnesium or aluminium as they exhibit higher energy absorption values.
- These structure members are in the form of tubular beams and can be made from glass fiber and carbon fiber for more critical components.

To enhance styling and part consolidation

CFRP Inner deck lid for FORD GT

	Design 1: carbon fiber	Design 2: glass fiber	Design 3: steel
Design parameters			
Wheelbase (cm)	274.3	274.3	261.6
Length × Width (cm)	472.4 × 180.3	472.4 × 180.3	469.9 × 170.2
Height (cm)	137.2	137.2	144.8
Components	25	25	120
Inserts	37	37	130
Material composition			
Primary material	Two-component polyurethane	Two-component polyurethane	Mild-grade steel
Brand	Bayer AG's Baydur 420	Bayer AG's Baydur 420	Varies
Price (\$/kg)	\$2.65	\$2.65	\$0.77
Reinforcement	Carbon fiber	Glass fiber NA	
Spray price (\$/kg)	\$20	\$2.53	
Lay-up brand	Hexcel Fabric (Woven 24 K)	Hexcel Fabric (Woven 24 K) Owens Corning F2 Matt	
Lay-up price (\$/kg)	\$13.20	\$3.08	
Resin: Reinforcement	65:35 vol%, 50:50 wt%	65:35 vol%, 41:59 wt%	NA
Inserts	Mild-grade steel	Mild-grade steel	Mild-grade steel
Assembly joining	Two-component adhesive	Two-component adhesive	Spot welding
Brand	SIA's Plastilock 731SI	SIA's Plastilock 731SI	NA
Price	\$17.50/kg	\$17.50/kg	NA

Table 1 Comparison of carbon, glass, and steel unibody design details

Material
Carbon fibreTensile strength
3.50Density
1.75Specific strength
2.00Steel1.307.900.17

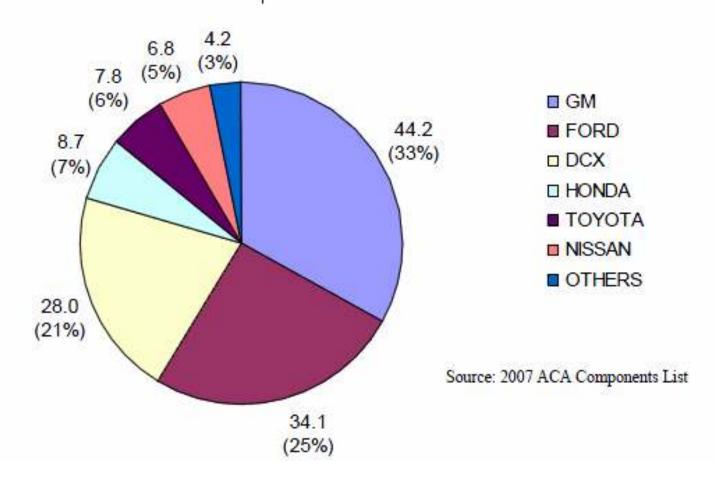
Carbon fibre rear wheel

To enhance styling and part consolidation

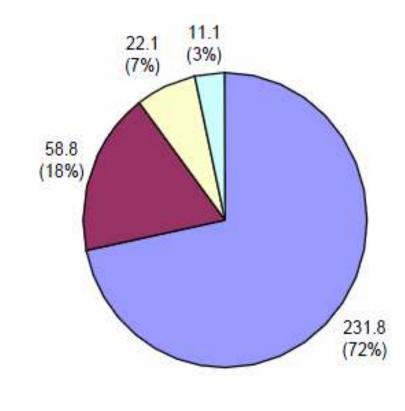
LGF PP for POLO front end carrier

SMC (Sheet moulding compound) for GM/ FORD pickup truck (truck box- tail gate)

Glass / Epoxy top sleeper



To provide the aerodynamic design


Expended Energy	City	Highway
Tire Resistance	25%	33%
Aerodynamic Drag	18%	51%
Inertia (Linear and Rotational)	57%	16%

Composites Use Trend

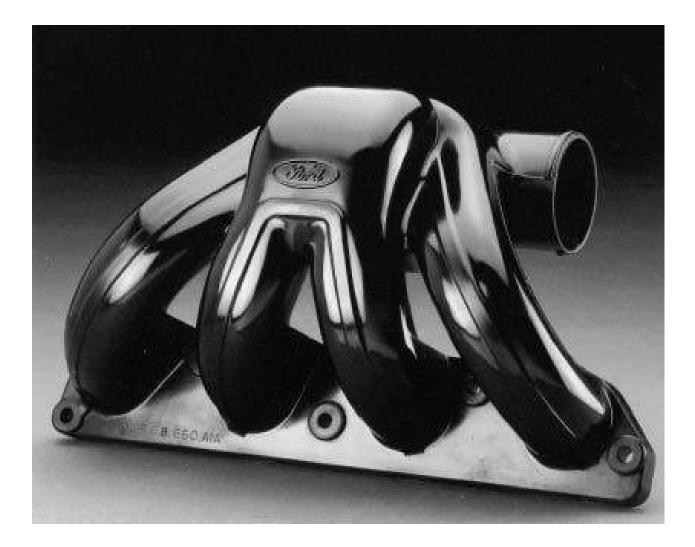
THERMOSET COMPOSITE USE BY OEM LIGHT VEHICLE ONLY - 135 MM LBS.

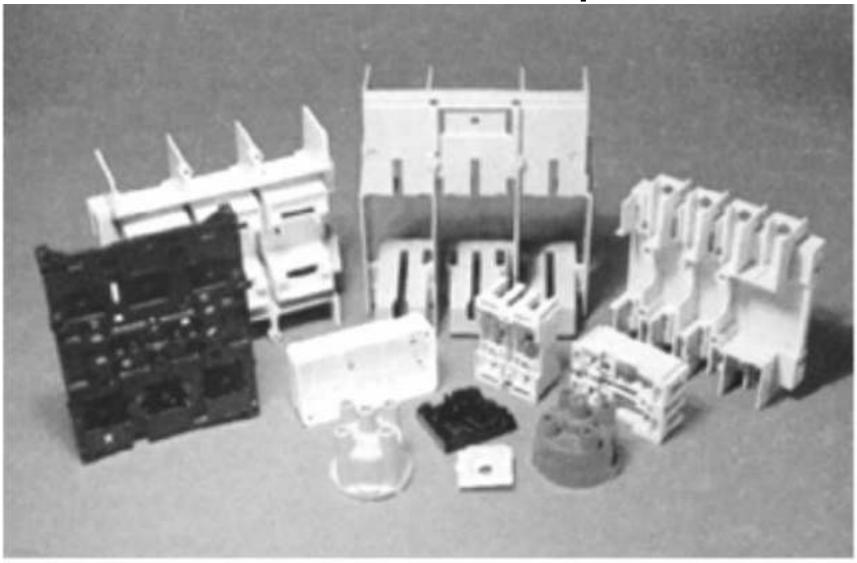
Use by application trend

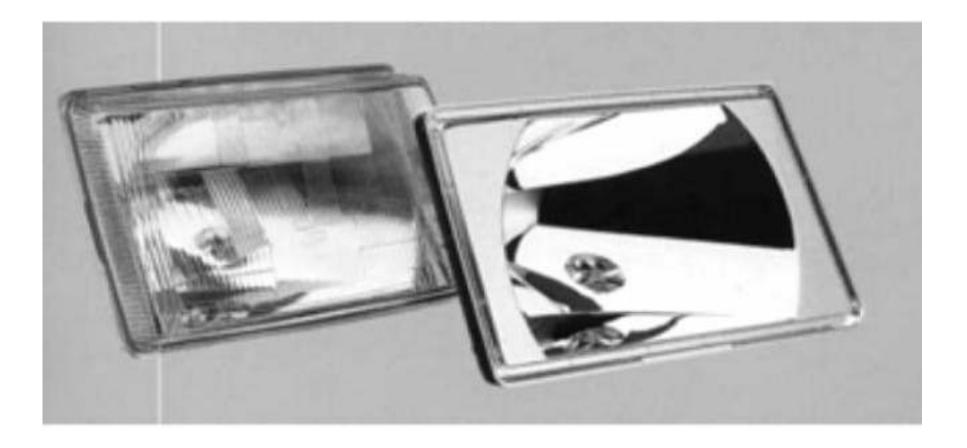
CLASS 'A' - EXTERIOR
 STRUCTURAL
 UNDER-THE-HOOD/POWERTRAIN
 INTERIOR

Source: 2007 ACA Components List

Citroën XM – a composite front end (Source: Citroen)


Ford Focus – Hybrid front end


Pontiac Fiero


Ford Inlet manifold

DMC Fuse Boxes and distribution caps

Headlamps from DMC

Rolls Royce Cam box

SMC front end moulding for the Ford Taurus (Source: The Budd Company)

Two-piece SMC windscreen surrounds replaces a multi-part steel pressing (*Source: The Budd Company*)

Chevrolet pickup tailgate by Creative Pultrusion

GMT bumper (Source: Neil Reynolds)

Video on Composite material is used in Sports Car...